| MINED BY:         |                          | FILE NO . CAS-0006810 |
|-------------------|--------------------------|-----------------------|
|                   |                          |                       |
| Vincent Uh        | EMERGING DISPLAY         | ISSUE : AUG.21, 2009  |
| OVED BY:          | TECHNOLOGIES CORPORATION | TOTAL PAGE: 22        |
| David Chang       |                          | VERSION: 4            |
| CUSTOMER          | ACCEPTANCE SPEC          | CIFICATIONS           |
|                   |                          |                       |
|                   |                          |                       |
|                   |                          |                       |
|                   |                          |                       |
|                   |                          |                       |
| МО                | DEL NO.:                 |                       |
|                   |                          |                       |
|                   | ETQ570G2DM6<br>(RoHS)    |                       |
| FOR               | MESSRS:                  |                       |
|                   |                          |                       |
|                   |                          |                       |
|                   |                          |                       |
|                   |                          |                       |
|                   |                          |                       |
|                   |                          |                       |
| CUSTOMER'S APPROV | A T                      |                       |
|                   | AL                       |                       |
| DATE :            |                          |                       |
| BY:               |                          |                       |
|                   |                          |                       |
|                   |                          |                       |
|                   |                          |                       |

| EMERG        | ING D                  | ISPLAY                                                                                                        | MODEL NO.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                     | VERSION                       | PAGE       |
|--------------|------------------------|---------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------|-------------------------------|------------|
|              | OGIES CORI             |                                                                                                               | ETQ570G2D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ) M 6               | 4                             | 0-1        |
|              |                        |                                                                                                               | DOC . FIRST ISSUE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | -                   | <u> </u>                      | -          |
| RECORD       | S OF R                 | EVISION                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                     | JA                            | N.23, 2009 |
| DATE         | REVISED<br>PAGE<br>NO. |                                                                                                               | SUMMAF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | RY                  |                               |            |
| MAR.04, 2009 | 1                      |                                                                                                               | SPECIFICATIONS<br>16.7M → 262K                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                     |                               |            |
|              | 3                      |                                                                                                               | CHARACTERISTICS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                     |                               |            |
|              |                        | PARAMETER POWER SUPPLY CURRENT FOR VCOM DRIVER                                                                | SYMBOL   CONDITION   MIN.   TYP.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | MAX. UNIT           | REMARK                        |            |
|              |                        | PARAMETER POWER SUPPLY CURRENT FOR VCOM DRIVER                                                                | SYMBOL   CONDITION   MIN.   TYP.   VCC-VSS   = 3.3V     (630)   LED B/L=ON                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | (720) mA            | REMARK                        |            |
|              | 7                      | 7. OUTLINE DIM<br>MARK △: AD                                                                                  | ENSIONS<br>DING PULL TAPE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                     |                               |            |
|              | 8                      | 8. BLOCK DIAGR<br>ADD FRAME C                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                     |                               |            |
|              | 12                     | 11.1 POWER SUP                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | VDD                 |                               |            |
|              |                        | VDD —                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | VDD                 |                               |            |
|              |                        | TFT LCD                                                                                                       | 3.3V TFT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | LCD                 | = 3.3V                        |            |
|              |                        | VSS -                                                                                                         | →                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | VSS VCC             |                               |            |
|              |                        | VCOM VSS — CIRCUIT LEDCTRL                                                                                    | 3.3V VCOM<br>0 ~ 4.0V CIRCUIT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | VSS                 | 3.3V<br>0~2.5                 | V          |
|              |                        | PWCTRL                                                                                                        | ON OFF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | PWCTRL ◀            | ON O                          |            |
|              |                        | LEDCTRL                                                                                                       | TNESS CONTROLLED BY E                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | BACKLIGH            | IT CURRENT                    | T OF       |
|              |                        | 45<br>40<br>(VII) 33<br>30<br>30<br>30<br>30<br>30<br>40<br>40<br>40<br>40<br>40<br>40<br>40<br>40<br>40<br>4 | AND LEDCTRL OF THE PROPERTY OF | 0 0.2 0.4 0.6 0.8 1 | 0 12 14 16 18 20 22 24 EDCTRL | 25         |
| APR.15, 2009 | 7                      | 7. OUTLINE DIM<br>MARK 🔬 : MO                                                                                 | ENSIONS<br>DIFY CN1 TYPE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                     |                               |            |
| AUG.21, 2009 | 3                      | POWER SUPPL                                                                                                   | CHARACTERISTICS<br>Y CURRENT FOR VCOM D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ORIVER:             |                               |            |
|              |                        | $TYP.=(630) \rightarrow 4$                                                                                    | 450, MAX.=(720) → 580                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                     |                               |            |
|              |                        |                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                     |                               |            |
|              |                        |                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                     |                               |            |
|              |                        |                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                     |                               |            |
|              |                        |                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                     |                               |            |
|              |                        |                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                     |                               |            |
|              |                        |                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                     |                               |            |

 MODEL NO.
 VERSION
 PAGE

 E T Q 5 7 0 G 2 D M 6
 4
 0-2

### TABLE OF CONTENTS

| NO.   | ITEM                         | PAGE    |
|-------|------------------------------|---------|
| ===== |                              |         |
| 1.    | GENERAL SPECIFICATIONS       | 1       |
| 2.    | MECHANICAL SPECIFICATIONS    | 1       |
| 3.    | ABSOLUTE MAXIMUM RATINGS     | 2       |
| 4.    | ELECTRICAL CHARACTERISTICS   | 3       |
| 5.    | TIMING CHARACTERISTICS       | 4       |
| 6.    | OPTICAL CHARACTERISTICS      | 5,6     |
| 7.    | OUTLINE DIMENSIONS           | 7       |
| 8.    | BLOCK DIAGRAM                | 8       |
| 9.    | DETAIL DRAWING OF DOT MATRIX | 9       |
| 10.   | INTERFACE SIGNALS            | 10,11   |
| 11.   | POWER SUPPLY                 | 12      |
| 12.   | INSPECTION CRITERION         | 13 ~ 22 |

| EMERGING DISPLAY          | MODEL NO.   | VERSION | PAGE |
|---------------------------|-------------|---------|------|
| TECHNOLOGIES CORPORATION  | ETQ570G2DM6 | 4       | 1    |
|                           |             |         |      |
| 1. GENERAL SPECIFICATIONS |             |         |      |

1.1 APPLICATION NOTES FOR CONTROLLER/DRIVER PLEASE REFER TO:

HIMAX HX8218 HIMAX HX8615

1 . 2 MATERIAL SAFETY DESCRIPTION
ASSEMBLIES SHALL COMPLY WITH EUROPEAN ROHS REQUIREMENTS,
INCLUDING PROHIBITED MATERIALS/COMPONENTS CONTAINING LEAD,
MERCURY, CADMIUM, HEXAVALENT CHROMIUM, POLYBROMINATED
BIPHENYLS (PBB) AND POLYBROMINATED

DIPHENYL ETHERS (PBDE)

2. MECHANICAL SPECIFICATIONS

| (1) DIAGONALS          | 5.7 inch                        |
|------------------------|---------------------------------|
| (2) NUMBER OF DOTS     | 320W * (RGB) * 240H DOTS        |
| (3) MODULE SIZE        | 142.1W * 100.4H * 11D (MAX.) mm |
|                        | (WITHOUT FPC)                   |
| (4) EFFECTIVE AREA     | 117.2W * 88.4H mm               |
| (5) ACTIVE AREA        | 115.2W * 86.4H mm               |
| (6) DOT SIZE           | 0.12W * 0.36H mm                |
| (7) PIXEL SIZE         | 0.36W * 0.36H mm                |
| (8) LCD TYPE           | TFT , TRANSMISSIVE              |
| (9) COLOR              | 262K                            |
| (10) VIEWING DIRECTION | 6 O'CLOCK                       |
| (11) BACK LIGHT        | LED , COLOR : WHITE             |
| (12) INTERFACE MODE    | RGB 18 BIT PARALLEL             |

| MODEL NO.   | VERSION | PAGE |
|-------------|---------|------|
| ETQ570G2DM6 | 4       | 2    |

#### 3. ABSOLUTE MAXIMUM RATINGS

#### 3.1 ELECTRICAL ABSOLUTE MAXIMUM RATINGS.

| PARAMETER                        | SYMBOL  | MIN. | MAX.    | UNIT | REMARK   |
|----------------------------------|---------|------|---------|------|----------|
| POWER SUPPLY VOLTAGE             | VDD-VSS | -0.3 | 7.0     | V    |          |
| FOWER SUFFLY VOLTAGE             | VCC-VSS | -0.3 | 7.0     | V    |          |
| INPUT SIGNAL VOLTAGE             | VL-VSS  | -0.3 | VCC+0.3 | V    |          |
| STATIC ELECTRICITY               |         |      |         | V    | NOTE (1) |
| LED BACKLIGHT POWER DISSIPATION  | PD      |      | 1.28    | W    |          |
| LED BACKLIGHT FORWARD<br>CURRENT | IF      |      | 0.06    | A    |          |
| LED BACKLIGHT REVERSE<br>VOLTAGE | VR      | _    | 45      | V    |          |

#### NOTE (1): LCM SHOULD BE GROUNDED DURING HANDING LCM.

#### 3.2 ENVIRONMENTAL ABSOLUTE MAXIMUM RATINGS.

| ITEM                | OPERATING |                                    | STORAGE        |                                   | REMARK                                                                            |  |         |
|---------------------|-----------|------------------------------------|----------------|-----------------------------------|-----------------------------------------------------------------------------------|--|---------|
| I I E IVI           | MIN.      | MAX.                               | MIN.           | MAX.                              | KEMAKK                                                                            |  |         |
| AMBIENT TEMPERATURE | -20°C     | 70°C                               | -30°C          | 80°C                              | NOTE (1), (2)                                                                     |  |         |
| HUMIDITY            | NOTE (3)  |                                    | IMIDITY        |                                   | NOTE (3)                                                                          |  | WITHOUT |
| HOMBH I             | NOTI      | E(3)                               | NOT            | D(3)                              | CONDENSATION                                                                      |  |         |
| VIBRATION           | _         | 2.45 m/s <sup>2</sup><br>( 0.25 G) |                | 11.76 m/s <sup>2</sup><br>(1.2 G) | 5~20Hz, 1HR<br>20~500Hz(20Hz), 1HR<br>20~500Hz(500Hz), 1HR<br>X, Y, Z, TOTAL 3HRS |  |         |
| SHOCK               | _         | 29.4 m/s <sup>2</sup><br>( 3 G)    | _              | 490 m/s <sup>2</sup><br>( 5 0 G ) | 10 m SECONDS<br>XYZ<br>DIRECTIONS<br>1 TIME EACH                                  |  |         |
| CORROSIVE GAS       | NOT ACC   | EPTABLE                            | NOT ACCEPTABLE |                                   |                                                                                   |  |         |

NOTE (1): Ta AT -30°C: 48HRS MAX.

80°C: 168HRS MAX.

NOTE (2): BACKGROUND COLOR CHANGES SLIGHTLY DEPENDING ON AMBIENT

TEMPERATURE THIS PHENOMENON IS REVERSIBLE .

NOTE (3) :  $Ta \le 60^{\circ}C$  : 90%RH MAX (96HRS MAX).

Ta > 60°C: ABSOLUTE HUMIDITY MUST BE LOWER THAN THE HUMIDITY

OF 90%RH AT 60°C(96HRS MAX).

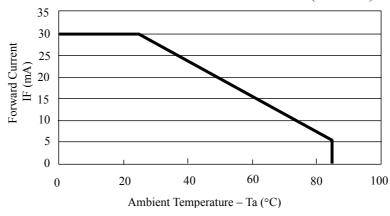
#### 4. ELECTRICAL CHARACTERISTICS

 $Ta = 25 \, ^{\circ}C$ 

|                                         |                  |                                 |         |       |         |      | 1a-23 C  |
|-----------------------------------------|------------------|---------------------------------|---------|-------|---------|------|----------|
| PARAMETER                               | SYMBOL           | CONDITION                       | MIN.    | TYP.  | MAX.    | UNIT | REMARK   |
| POWER SUPPLY VOLTAGE FOR DIGITAL        | VDD-VSS          | _                               | 3       | 3.3   | 3.6     | V    |          |
| POWER SUPPLY VOLTAGE FOR VCOM DRIVER    | VCC-VSS          | _                               | 3       | 3.3   | 3.6     | V    |          |
| POWER SUPPLY CURRENT FOR DIGITAL        | IDD              | VDD-VSS<br>=3.3V                | _       | 8     | 11      | mA   | NOTE (1) |
| POWER SUPPLY CURRENT<br>FOR VCOM DRIVER | ICC              | VCC-VSS<br>= 3.3V<br>LED B/L=ON |         | 450   | 580     | mA   |          |
| LOW LEVEL INPUT<br>VOLTAGE              | VIL              | _                               | 0       |       | 0.3*VDD | V    | NOTE (2) |
| HIGH LEVEL INPUT<br>VOLTAGE             | VIH              | _                               | 0.7*VDD |       | VDD     | V    | NOTE (2) |
| LOW LEVEL OUTPUT<br>VOLTAGE             | VOL              | $IOL = 400 \mu A$               | 0       |       | 0.2*VDD | V    | NOTE (3) |
| HIGH LEVEL OUTPUT<br>VOLTAGE            | VOH              | $IOH = -400 \mu A$              | 0.8*VDD |       | VDD     | V    | NOTE (3) |
| FRAME FREQUENCY                         | fFRAME           |                                 |         | 83    | 92      | Hz   |          |
| DOT DATA CLOCK                          | DCLK             |                                 |         | 6.4   | 7.1     | MHz  |          |
| POWER SUPPLY FOR LED<br>BACKLIGHT       | $V_{\mathrm{F}}$ | I <sub>F</sub> =40mA            | 28      | 30    | 32      | V    | NOTE (4) |
| LED LIFE TIME                           |                  |                                 | 30000   | 40000 | _       | HRS  |          |


NOTE (1): THE DISPLAY PATTERN IS ALL "WHITE".

NOTE (2): APPLIED TO TERMINALS / RESET, HSYNC, VSYNC, ENB, DCLK, B5~B0, G5~G0, R5~R0.

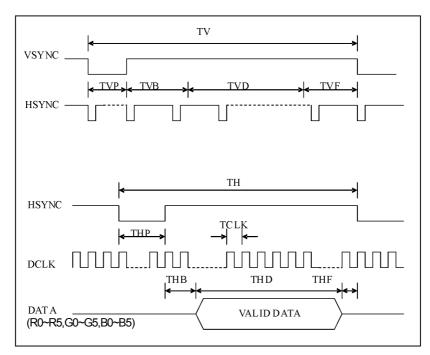

NOTE (3): APPLIED TO TERMINALS B5~B0, G5~G0, R5~R0.

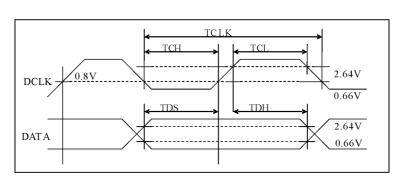
NOTE (4): INTERNAL CIRCUIT DIAGRAM OF BACKLIGHT

( VF=VBL+(A)—VBL1-(K1)=VBL+(A)—VBL2-(K2) )



NOTE (5): AMBIENT TEMP. VS. ALLOWABLE FORWARD CURRENT.(PER LED)





| MODEL NO.           | VERSION | PAGE |
|---------------------|---------|------|
| ETO 5 7 0 G 2 D M 6 | 4       | 4    |

#### 5. TIMING CHARACTERISTICS

#### 5.1 DIGITAL PARALLEL RGB INTERFACE

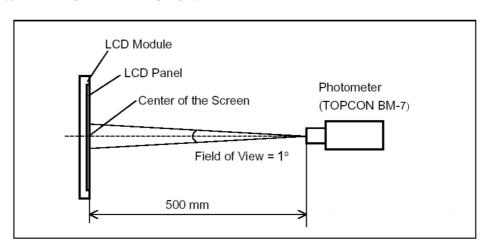
| SIGNAL | ITEM                         |             | SYMBOL | MIN. | TYP.           | MAX. | UNIT |
|--------|------------------------------|-------------|--------|------|----------------|------|------|
|        | FREQUENCY                    |             | TCLK   |      | 6.4            | 7.1  | MHz  |
| DCLK   | HIGH TIME                    | HIGH TIME   |        |      | 78             | _    | ns   |
|        | LOW TIME                     |             | TCL    |      | 78             | _    | ns   |
| DATA   | SETUP TIME                   |             | TDS    | 12   | _              | _    | ns   |
| DATA   | HOLD TIME                    |             | TDH    | 12   | _              | _    | ns   |
|        | PERIOD                       |             | TH     |      | 408            | _    | DCLK |
|        | PULSE WIDTH                  |             | THP    |      | 30             | _    | DCLK |
| HSYNC  | BACK-PORCH<br>DISPLAY PERIOD |             | THB    | _    | 38             | _    | DCLK |
|        |                              |             | THD    | _    | 320            | _    | DCLK |
|        | FRONT-PORCH                  |             | THF    |      | 20             | _    | DCLK |
|        | PERIOD                       | NTSC<br>PAL | TV     |      | 262.5<br>312.5 | _    | TH   |
|        | PULSE WIDTH                  |             | TVP    | 1    | 3              | 5    | TH   |
| VSYNC  | BACK-PORCH                   | NTSC        | TVB    |      | 15             |      | TH   |
| VSTNC  | BACK-PORCH                   | PAL         | 1 4 D  |      | 23             |      | 111  |
|        | DISPLAY PERIOD               |             | TVD    | _    | 240            | _    | TH   |
|        | FRONT-PORCH                  | NTSC<br>PAL | TVF    | _    | 4.5<br>46.5    | _    | TH   |





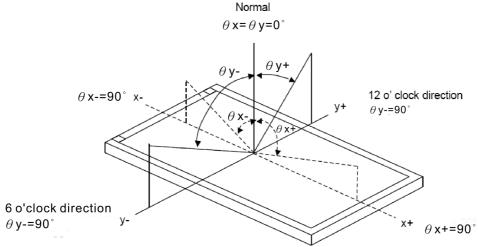
| MODEL NO.   | VERSION | PAGE |
|-------------|---------|------|
| ETQ570G2DM6 | 4       | 5    |

### $6. \quad OPTICAL \ CHARACTERISTICS \ (NOTE \ 1)$


#### 6.1 OPTICAL CHARACTERISTICS

 $Ta = 25 \pm 2$  °C

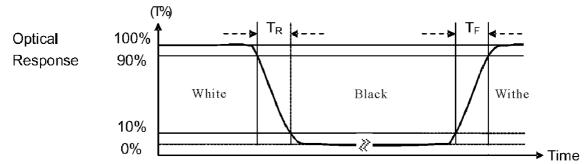
|                   |         | SYMBOL                  |                        |                                             |      |           |      | t                 | -23±2 C  |
|-------------------|---------|-------------------------|------------------------|---------------------------------------------|------|-----------|------|-------------------|----------|
| ITE               | I T E M |                         | COND                   | ITION                                       | MIN. | TYP.      | MAX. | UNIT              | REMARK   |
|                   |         |                         | CR ≥ 10                | $\theta_{\rm x}=0^{\circ}$                  | 55   | 60        |      | daa               | NOTE (2) |
| VIEWING ANGLE     |         | $\Theta_{	ext{y-}}$     |                        | $O_{\rm x}$ $-O$                            | 70   | 75        |      |                   |          |
| VIEWING ANGL      | E       | $\theta_{x^+}$          | θ,=0°                  |                                             | 70   | 75        |      | deg.              | NOTE (3) |
|                   |         | $\theta_{x}$            |                        | 70                                          | 75   |           |      |                   |          |
| CONTRAST RAT      | ΊΟ      | CR                      | θx=0°,                 | θy=0°                                       | 300  | 400       |      |                   | NOTE (3) |
| RESPONSE TIME     | 7       | T <sub>R</sub> ( rise ) |                        |                                             |      | 15        | 30   | msec              | NOTE (4) |
| KESPONSE IIIVIE   | 2       | T <sub>F</sub> (fall)   | $\theta x = 0^{\circ}$ | $\theta x=0^{\circ}$ , $\theta y=0^{\circ}$ |      | 35        | 50   |                   | NOTE (4) |
|                   | WHITE   | Wx                      |                        |                                             | 0.27 | 0.32      | 0.37 |                   |          |
|                   |         | Wy                      |                        |                                             | 0.30 | 0.35      | 0.40 |                   |          |
| COLOR OF          | DED     | Rx                      |                        |                                             | 0.58 | 0.63      | 0.68 |                   | NOTE (5) |
| COLOR OF          | RED     | Ry                      | θx=0°,                 | •                                           | 0.31 | 0.36 0.41 | 0.41 |                   |          |
| CIE<br>COORDINATE | CDEEN   | Gx                      |                        | $I_F = 40 \text{mA}$ NTSC: 60%              | 0.28 | 0.33      | 0.38 |                   |          |
| COORDINATE        | GREEN   | Gy                      | 1,150                  |                                             | 0.55 | 0.60      | 0.65 |                   |          |
|                   | DLUE    | Bx                      |                        |                                             | 0.09 | 0.14      | 0.19 |                   |          |
|                   | BLUE    | Ву                      |                        |                                             | 0.06 | 0.11      | 0.16 |                   |          |
| THE BRIGHTNESS    |         | D                       |                        |                                             | 450  | 500       |      | 1/ 2              |          |
| OF MODULE         |         | В                       | θx=0°,                 | θy=0°                                       | 450  | 500       |      | cd/m <sup>2</sup> | NOTE (6) |
| THE UNIFORMITY OF |         |                         |                        | 0mA                                         | 75   | 90        |      | 0/                | NOTE (6) |
| MODULE            |         | _                       |                        |                                             | 75   | 80        |      | %                 |          |


#### NOTE (1): TEST EQUIPMENT SETUP:

AFTER STABILIZING AND LEAVING THE PANEL ALONE AT A GIVEN TEMPERATURE FOR 30 MINUTES, THE MEASUREMENT SHOULD BE EXECUTED. MEASUREMENT SHOULD BE EXECUTED IN A STABLE, WINDLESS, AND DARK ROOM. OPTICAL SPECIFICATIONS ARE MEASURED BY TOPCON BM-7 (FAST) WITH A VIEWING ANGLE OF 1° AT A DISTANCE OF 50cm AND NORMAL DIRECTION.



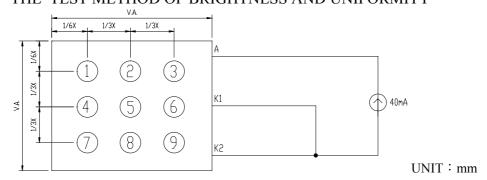
| MODEL NO.   | VERSION | PAGE |
|-------------|---------|------|
| ETQ570G2DM6 | 4       | 6    |


NOTE (2): DEFINITION OF VIEWING ANGLE:

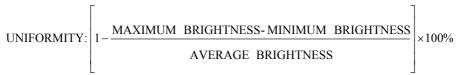


NOTE (3): DEFINITION OF CONTRAST RATIO:

 $CONTRAST RATIO(CR) = \frac{BRIGHTNESS MEASURED WHEN LCD IS AT "WHITE STATE"}{BRIGHTNESS MEASURED WHEN LCD IS AT "BLACK STATE"}$ 


NOTE (4): DEFINITION OF RESPONSE TIME: TR AND TF THE FIGURE BELOW IS THE OUTPUT SIGNAL OF THE PHOTO DETECTOR.

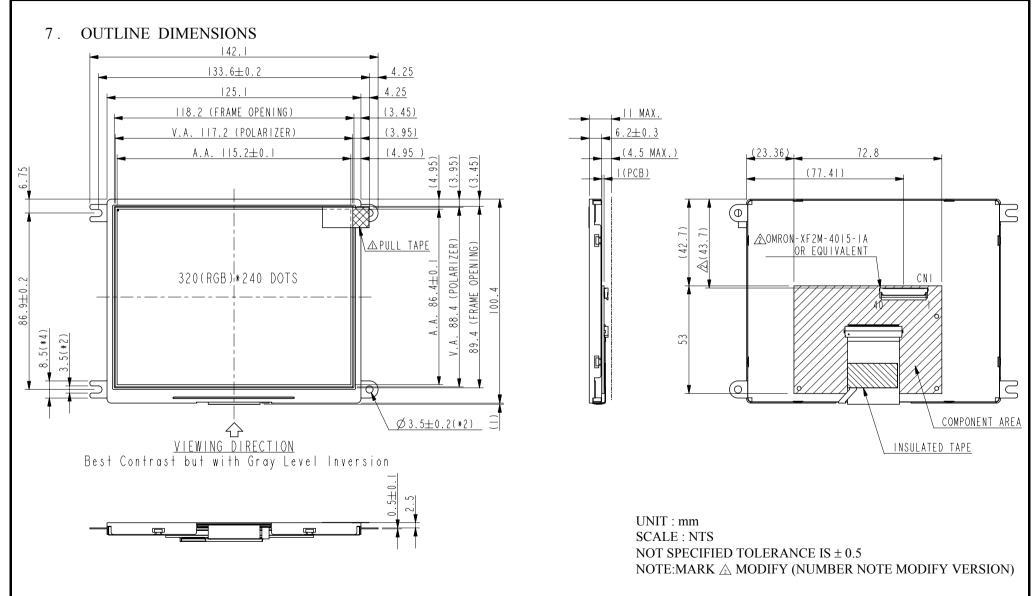


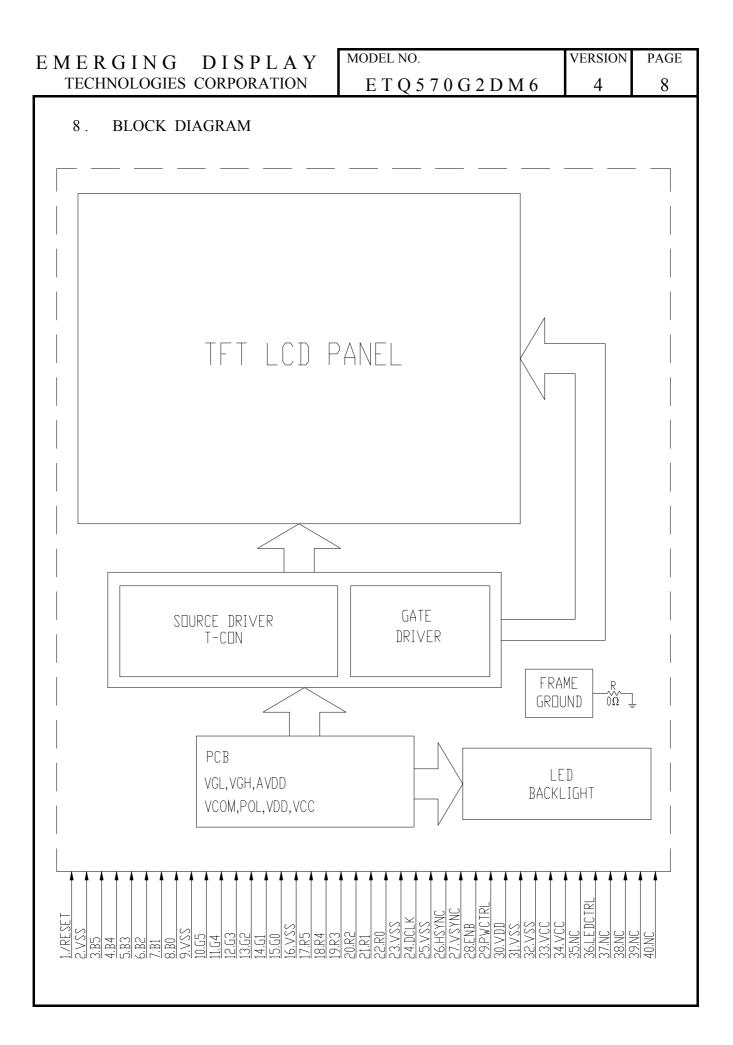

NOTE (5): THE 100% TRANSMISSION IS DEFINED AS THE TRANSMISSION OF LCD PANEL WHEN ALL THE INPUT TERMINALS OF MODULE ARE ELECTRICALLY OPENED.

NOTE (6): BRIGHTNESS MEASURED WHEN LCD IS AT "WHITE STATE"

6.2 THE TEST METHOD OF BRIGHTNESS AND UNIFORMITY




6.3 THE CALCULATING METHOD OF UNIFORMITY

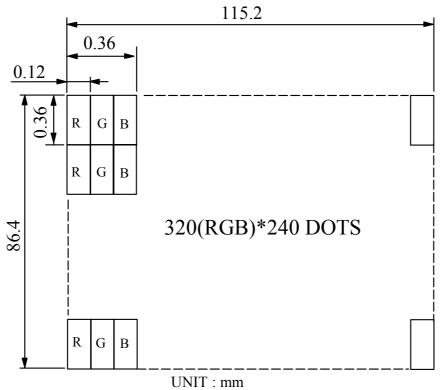



### E M E R G I N G D I S P L A Y TECHNOLOGIES CORPORATION

MODEL NO. E T Q 5 7 0 G 2 D M 6 VERSION 4

PAGE






| EMERGING     | DISPLAY     |
|--------------|-------------|
| TECHNOLOGIES | CORPORATION |

 MODEL NO.
 VERSION
 PAGE

 ETQ570G2DM6
 4
 9





SCALE : NTS

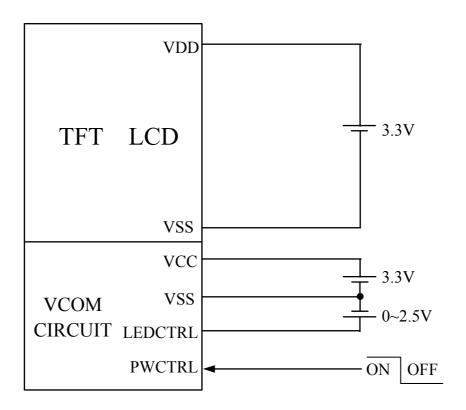
NOT SPECIFIED TOLERANCE IS  $\pm$  0.1 DOTS MATRIX TOLERANCE IS  $\pm$  0.01

| MODEL NO.   | VERSION | PAGE |
|-------------|---------|------|
| ETQ570G2DM6 | 4       | 10   |

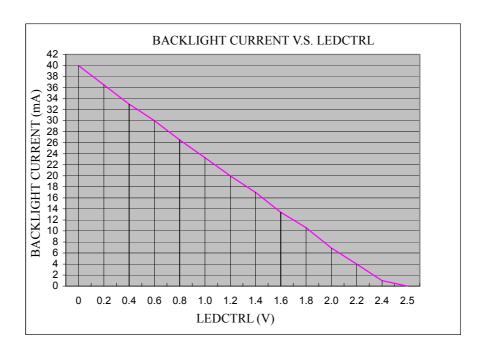
### 10. INTERFACE SIGNALS

| N NO | SYMBOL | I/O | FUNCTION                         |                                                                 |                 |  |  |  |
|------|--------|-----|----------------------------------|-----------------------------------------------------------------|-----------------|--|--|--|
| 1    | /RESET | I   | HARDWARE RESET                   |                                                                 |                 |  |  |  |
| 2    | VSS    | P   |                                  | GROUND (VSS IS CONNECTED TO METAL HOUSING WITH CONDUCTIVE TAPE) |                 |  |  |  |
| 3    | B5     | I   | BLUE DATA BIT 5                  |                                                                 |                 |  |  |  |
| 4    | B4     | I   | BLUE DATA BIT 4                  | LUE DATA BIT 4                                                  |                 |  |  |  |
| 5    | В3     | I   | BLUE DATA BIT 3                  |                                                                 |                 |  |  |  |
| 6    | B2     | I   | BLUE DATA BIT 2                  |                                                                 |                 |  |  |  |
| 7    | B1     | I   | BLUE DATA BIT 1                  |                                                                 |                 |  |  |  |
| 8    | В0     | I   | BLUE DATA BIT 0                  |                                                                 |                 |  |  |  |
| 9    | VSS    | P   | GROUND (VSS IS COCONDUCTIVE TAPE | ONNECTED TO META<br>E)                                          | AL HOUSING WITH |  |  |  |
| 10   | G5     | I   | GREEN DATA BIT 5                 |                                                                 |                 |  |  |  |
| 11   | G4     | I   | GREEN DATA BIT 4                 |                                                                 |                 |  |  |  |
| 12   | G3     | I   | GREEN DATA BIT 3                 |                                                                 |                 |  |  |  |
| 13   | G2     | I   | GREEN DATA BIT 2                 |                                                                 |                 |  |  |  |
| 14   | G1     | I   | GREEN DATA BIT 1                 |                                                                 |                 |  |  |  |
| 15   | G0     | I   | GREEN DATA BIT 0                 |                                                                 |                 |  |  |  |
| 16   | VSS    | P   |                                  | GROUND (VSS IS CONNECTED TO METAL HOUSING WITH CONDUCTIVE TAPE) |                 |  |  |  |
| 17   | R5     | I   | RED DATA BIT 5                   | ,                                                               |                 |  |  |  |
| 18   | R4     | I   | RED DATA BIT 4                   | RED DATA BIT 4                                                  |                 |  |  |  |
| 19   | R3     | I   | RED DATA BIT 3                   | ED DATA BIT 3                                                   |                 |  |  |  |
| 20   | R2     | I   | RED DATA BIT 2                   |                                                                 |                 |  |  |  |
| 21   | R1     | I   | RED DATA BIT 1                   |                                                                 |                 |  |  |  |
| 22   | R0     | I   | RED DATA BIT 0                   |                                                                 |                 |  |  |  |
| 23   | VSS    | P   | GROUND (VSS IS COCONDUCTIVE TAPE | ONNECTED TO META<br>E)                                          | AL HOUSING WITH |  |  |  |
| 24   | DCLK   | Ι   | DOT DATA CLOCK                   |                                                                 |                 |  |  |  |
| 25   | VSS    | P   | GROUND (VSS IS COCONDUCTIVE TAPE | ONNECTED TO META<br>E)                                          | AL HOUSING WITH |  |  |  |
| 26   | HSYNC  | I   | HORIZONTAL SYNO                  | C INPUT                                                         |                 |  |  |  |
| 27   | VSYNC  | I   | VERTICAL SYNC IN                 | IPUT                                                            |                 |  |  |  |
| 28   | ENB    | I   | DATA ENABLE INP                  | UT                                                              |                 |  |  |  |
|      |        |     | LOGIC                            | PWCTRL                                                          | REMARK          |  |  |  |
|      |        |     | LEVEL<br>H=3.3V                  | Н                                                               | POWER ON        |  |  |  |
| 29   | PWCTRL | I   | L=0V                             | L                                                               | SHUTDOWN        |  |  |  |
|      |        |     |                                  | LED DRIVER : JP15 1-:<br>LED DRIVER : JP15 2-                   | ,               |  |  |  |

 MODEL NO.
 VERSION
 PAGE


 ETQ570G2DM6
 4
 11

| PIN NO | SYMBOL  | I/O | FUNCTION                                                                                                                                                                                                                              |
|--------|---------|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 30     | VDD     | P   | POWER SUPPLY FOR DIGITAL CIRCUIT                                                                                                                                                                                                      |
| 31     | VSS     | P   | GROUND (VSS IS CONNECTED TO METAL HOUSING WITH CONDUCTIVE TAPE)                                                                                                                                                                       |
| 32     | VSS     | P   | GROUND (VSS IS CONNECTED TO METAL HOUSING WITH CONDUCTIVE TAPE)                                                                                                                                                                       |
| 33     | VCC     | P   | POWER SUPPLY FOR VCOM DRIVER CIRCUIT                                                                                                                                                                                                  |
| 34     | VCC     | P   | POWER SUPPLY FOR VCOM DRIVER CIRCUIT                                                                                                                                                                                                  |
| 35     | NC      | _   | NON CONNECTION (USING INTERNAL LED DRIVER) OR ANODE (USING EXTERNAL LED DRIVER) WHEN INTERNAL LED DRIVER: JP5 1-2 (DEFAULT) WHEN EXTERNAL LED DRIVER: JP5 2-3                                                                         |
| 36     | LEDCTRL | Ι   | BRIGHTNESS CONTROL FOR LED BACKLIGHT; LEDCTRL (USING INTERNAL LED DRIVER) OR CATHODE (USING EXTERNAL LED DRIVER) WHEN INTERNAL LED DRIVER: JP6 1-2 (DEFAULT) JP14 1-2 (DEFAULT) WHEN EXTERNAL LED DRIVER: JP6 2-3 JP14 NON CONNECTION |
| 37     | NC      |     | NON CONNECTION                                                                                                                                                                                                                        |
| 38     | NC      | _   | NON CONNECTION                                                                                                                                                                                                                        |
| 39     | NC      |     | NON CONNECTION                                                                                                                                                                                                                        |
| 40     | NC      |     | NON CONNECTION                                                                                                                                                                                                                        |


MODEL NO. VERSION PAGE ETQ570G2DM6 4 12

### 11. POWER SUPPLY

#### 11.1 POWER SUPPLY FOR LCM



#### 1 1 .2 THE BRIGHTNESS CONTROLLED BY BACKLIGHT CURRENT OF LEDCTRL



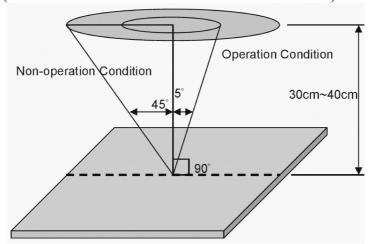
| MODEL NO.   | VERSION | PAGE |
|-------------|---------|------|
| ETQ570G2DM6 | 4       | 13   |

#### 12. INSPECTION CRITERION 12.1 APPLICATION

THIS INSPECTION STANDARD IS TO BE APPLIED TO THE LCD MODULE DELIVERED FROM EMERGING DISPLAY TECHNOLOGIES CORP.( E.D.T ) TO CUSTOMERS

#### 12.2 INSPECTION CONDITIONS

#### 12.2.1 (1)OBSERVATION DISTANCE: 35cm±5cm


(2) VIEW ANGLE:

NON-OPERATION CONDITION: ±5°

(PERPENDICULAR TO LCD PANEL SURFACE)

OPERATION CONDITION: ±45°

(PERPENDICULAR TO LCD PANEL SURFACE)



#### 12.2.2 ENVIRONMENT CONDITIONS:

| AMBIEN       | 20°C~25°C             |                  |
|--------------|-----------------------|------------------|
| AMBI         | 65±20%RH              |                  |
| AMBIENT      | COSMETIC INSPECTION   | MORE THAN 600Lux |
| ILLUMINATION | FUNCTIONAL INSPECTION | 300~500 Lux      |

#### 12.2.3 INSPECTION LOT

QUANTITY PER DELIVERY LOT FOR EACH MODEL

#### 12.2.4 INSPECTION METHOD

A SAMPLING INSPECTION SHALL BE MADE ACCORDING TO THE FOLLOWING PROVISIONS TO JUDGE THE ACCEPTABILITY (a)APPLICABLE STANDARD:

MIL-STD-105E

NORMAL INSPECTION, SINGLE SAMPLING

LEVEL II

(b)AQL : MAJOR DEFECT : AQL 0.65 MINOR DEFECT : AQL 1.0

| MODEL NO.   | VERSION | PAGE |
|-------------|---------|------|
| ETQ570G2DM6 | 4       | 14   |

#### 12.3 INSPECTION STANDARDS

#### 12.3.1 VISUAL DEFECTS CLASSIFICATION

| TYPE OF DEFECT | INSPECTION ITEM          | DEFECT FEATURE                                                                                                                                                                        | AQL  |
|----------------|--------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|
| MAJOR DEFECT   | 1.DISPLAY ON             | DEFECT TO MISS SPECIFIED<br>DISPLAY FUNCTION, FOR ALL<br>AND SPECIFIED DOTS<br>EX: DISCONNECTION, SHORT<br>CIRCUIT ETC                                                                | 0.65 |
|                | 2.BACKLIGHT              | NO LIGHT     FLICKERING AND OTHER     ABNORMAL ILLUMINATION                                                                                                                           | 0.65 |
|                | 3.DIMENSIONS             | • SUBJECT TO INDIVIDUAL ACCEPTANCE SPECIFICATIONS                                                                                                                                     |      |
|                | 1.DISPLAY ZONE           | <ul> <li>BLACK/WHITE SPOT</li> <li>BUBBLES ON POLARIZER</li> <li>NEWTON RING</li> <li>BLACK/WHITE LINE</li> <li>SCRATCH</li> <li>CONTAMINATION</li> <li>LEVER COLOR SPREED</li> </ul> |      |
| MINOR DEFECT   | 2.BEZEL ZONE             | <ul><li>STAINS</li><li>SCRATCHES</li><li>FOREIGN MATTER</li></ul>                                                                                                                     | 1.0  |
|                | 3.SOLDERING              | <ul> <li>INSUFFICIENT SOLDER</li> <li>SOLDERED IN INCORRECT<br/>POSITION</li> <li>CONVEX SOLDERING SPOT</li> <li>SOLDER BALLS</li> <li>SOLDER SCRAPS</li> </ul>                       |      |
|                | 4.DISPLAY ON<br>(ALL ON) | • LIGHT LINE                                                                                                                                                                          |      |

| MODEL NO.   | VERSION | PAGE |
|-------------|---------|------|
| ETQ570G2DM6 | 4       | 15   |

### 12.3.2 MODULE DEFECTS CALSSIFICATION

| NO. | ITEM                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | CRI                                                | TERIA                            |             |  |  |
|-----|---------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------|----------------------------------|-------------|--|--|
| 1.  | DISPLAY ON<br>INSPECTION                                                                                            | (1)INCORRECT PATTERN (2)MISSING SEGMENT (3)DIM SEGMENT (4)OPERATING VOLTAGE BEYOND SPEC                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                    |                                  |             |  |  |
| 2.  | OVERALL<br>DIMENSIONS                                                                                               | (1)OVERALL DIM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | IENSION BEYONI                                     | O SPEC                           |             |  |  |
| 3.  | DOT DEFECT                                                                                                          | (1) INSPECTION PATTERN: FULL WHITE, FULL BLACK, RED, GREEN AND BLUE SCREENS.  (2)  ITEMS ACCEPTABLE COUNT BRIGHT DOT N≤2 DARK DOT TOAL BRIGHT AND DARK DOTS N≤4  NOTE:  1. THE DEFINITION OF DOT: THE SIZE OF A DEFECTIVE DOT OVER 1/2 OF WHOLE DOT IS REGARDED AS ONE DEFECTIVE DOT.  2. BRIGHT DOT: DOTS APPEAR BRIGHT AND UNCHANGED IN SIZE IN WHICH LCD PANEL IS DISPLAYING UNDER BLACK PATTERN.  3. DARK DOT: DOTS APPEAR DARK AND UNCHANGED IN SIZE IN WHICH LCD PANEL IS DISPLAYING UNDER PURE RED, GREEN, BLUE PICTURE. |                                                    |                                  |             |  |  |
| 4.  | FOREIGN<br>BLACK/WHITE/<br>BRIGHT LINE/<br>SCRATCH<br>OF VIEWING AREA                                               | LENGTH: L $L \le 0.3$ $0.3 < L \le 2.5$ $2.5 < L$ WIDTH: W mm, 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                | WIDTH: W $W \le 0.05$ $0.05 < W \le 0.1$ $0.1 < W$ | PERMISSIBLE NO.  IGNORE  4  NONE | ECETICIONE. |  |  |
| 5.  | FOREIGN MATTER \ BLACK SPOTS \ WHITE SPOTS \ DENT (INCLUDING LIGHT LEAKAGE DUE TO POLARIZING PLATES PINHOLES, ETC.) | AVERAGE DIA  D ≤  0.15 <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | METER (mm): D<br>0.15<br>D ≤ 0.5<br>< D            | NUMBER OF PIECES IGNORE 4 NONE   |             |  |  |

MODEL NO. VERSION PAGE
ETQ570G2DM6 4 16

| NO. | ITEM                                                        | CRITERIA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                            |                               |  |
|-----|-------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------|-------------------------------|--|
|     |                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | AVERAGE DIAMETER (mm): D                   | NUMBER OF PIECES<br>PERMITTED |  |
|     |                                                             | DUDDI E ON THE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | D ≤ 0.25                                   | IGNORE                        |  |
|     |                                                             | BUBBLE ON THE POLARIZER                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | $0.25 < D \le 0.5$                         | N ≤ 5                         |  |
|     |                                                             | TOEMIGEER                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.5 < D                                    | NOTE                          |  |
|     |                                                             | SURFACE STATUS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | D < 0.1 mm                                 | IGNORE                        |  |
|     |                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.1 < D ≤ 0.3mm                            | N ≤ 3                         |  |
|     |                                                             | CF FAIL / SPOT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | D < 0.1  mm<br>$0.1 < D \le 0.3 \text{mm}$ | IGNORE<br>N ≤ 3               |  |
| 6.  | BUBBLES OF<br>POLARIZER<br>/DIRT/CF FAIL<br>/SURFACE STAINS | NOTE: (1)POLARIZER BUBBLE IS DEFINED AS THE BUBBLE APPEARS ON ACTIVE DISPLAY AREA. THE DEFECT OF POLARIZER BUBBLE SHALL BE IGNORED IF THE POLARIZER BUBBLE APPEARS ON THE OUTSIDE OF ACTIVE DISPLAY AREA. (2)THE EXTRANEOUS SUBSTANCE IS DEFINED AS IT CAN BE OBSERVED WHEN THE MODULE IS POWER ON. (3)THE DEFINITION OF AVERAGE DIAMETER, D IS DEFINED AS FOLLOWING. AVERAGE DIAMETER (D)=(a+b)/2                                                                                                              |                                            |                               |  |
| 7.  | LINE DEFECT ON<br>DISPLAY                                   | OBVIOUS VERTICAL OR HORIZONTAL LINE DEFECT IS NOT ALLOW                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                            |                               |  |
| 8.  | MURA ON DISPLAY                                             | IT'S OK IF MURA IS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | SLIGHT VISIBLE THROU                       | NG 6% ND FILTER               |  |
| 9.  | UNEVEN COLOR<br>SPREAD,<br>COLORATION                       | (1)TO BE DETERMINED BASED UPON THE STANDARD SAMPLE.                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                            |                               |  |
| 10. | BEZEL<br>APPEARANCE                                         | (1)BEZEL MAY NOT HAVE RUST, BE DEFORMED OR HAVE FINGER PRINTS STAINS OF OTHER CONTAMINATION. (2)BEZEL MUST COMPLY WITH JOB SPECIFICATIONS.                                                                                                                                                                                                                                                                                                                                                                      |                                            |                               |  |
| 11  | РСВ                                                         | (1)THERE MAY NOT BE MORE THAN 2mm OF SEALANT OUTSIDE THE SEAL AREA ON THE PCB, AND THERE SHOULD BE NO MORE THAN THREE PLACES. (2)NO OXIDATION OR CONTAMINATION PCB TERMINALS. (3)PARTS ON PCB MUST BE THE SAME AS ON THE PRODUCTION CHARACTERISTIC CHART. THERE SHOULD BE NO WRONG PARTS, MISSING PARTS OR EXCESS PARTS. (4)THE JUMPER ON THE PCB SHOULD CONFORM TO THE PRODUCT CHARACTERISTIC CHART. (5)IF SOLDER GETS ON BEZEL TAB PADS, LED PAD, ZEBRA PAD OR SCREW HOLD PAD, MAKE SURE IT IS SMOOTHED DOWN. |                                            |                               |  |

MODEL NO. VERSION PAGE
ETQ570G2DM6 4 17

| NO ITEM       | CDITEDIA                                                                                                                                                                        |
|---------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| NO. ITEM      | CRITERIA  (1)NO SOLDERING FOUND ON THE SPECIFIED PLACE (2)INSUFFICENT SOLDER (a)LSI, IC A POOR WETTING OF SOLDER IS BETWEEN LOWER BEND OR "HEEL" OF LEAD AND PAD  SOLDER FILLET |
|               | (b)CHIP COMPONENT  • SOLDER IS LESS THAN 50% OF SIDES AND FRONT FACE WETTING  SOLDER FILLET                                                                                     |
| 12. SOLDERING | SOLDER WETS 3 SIDES OF TERMINAL, BUT LESS THAN 25% OF SIDES AND FRONT SURFACE AREA ARE COVERED  SOLDER                                                                          |
|               |                                                                                                                                                                                 |
|               | (3)PARTS ALIGMENT (a)LSI, IC LEAD WIDTH IS MORE THAN 50% BEYOND PAD OUTLINE                                                                                                     |
|               |                                                                                                                                                                                 |

 MODEL NO .
 VERSION
 PAGE

 ETQ570G2DM6
 4
 18

| NO.             | ITEM      | CRITERIA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|-----------------|-----------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                 | SOLDERING | (b)CHIP COMPONENT COMPONENT IS OFF CENTER, AND MORE THAN 50% OF THE LEADS IS OFF THE PAD OUTLINE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 12. SOLDER      |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                 |           | <ul> <li>(4)NO UNMELTED SOLDER PASTE MAY BE PRESENT ON THE PCB.</li> <li>(5)NO COLD SOLDER JOINTS, MISSING SOLDER CONNECTIONS,<br/>OXIDATION OR ICICLE.</li> <li>(6)NO RESIDUE OR SOLDER BALLS ON PCB.</li> <li>(7)NO SHORT CIRCUITS IN COMPONENTS ON PCB.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 13. BACKL       | IGHT      | (1)NO LIGHT (2)FLICKERING AND OTHER ABNORMAL ILLUMINATION (3)SPOTS OR SCRATCHES THAT APPEAR WHEN LIT MUST BE JUDGED USING LCD SPOT, LINES AND CONTAMINATION STANDARDS. (4)BACKLIGHT DOESN'T LIGHT OR COLOR IS WRONG.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 14. GENER APPEA |           | <ul> <li>(1)NO OXIDATION, CONTAMINATION, CURVES OR, BENDS ON INTERFACE PIN (OLB) OF TCP.</li> <li>(2)NO CRACKS ON INTERFACE PIN (OLB) OF TCP.</li> <li>(3)NO CONTAMINATION, SOLDER RESIDUE OR SOLDER BALLS ON PRODUCT.</li> <li>(4)THE IC ON THE TCP MAY NOT BE DAMAGED, CIRCUITS.</li> <li>(5)THE UPPERMOST EDGE OF THE PROTECTIVE STRIP ON THE INTERFACE PIN MUST BE PRESENT OR LOOK AS IF IT CAUSE THE INTERFACE PIN TO SEVER.</li> <li>(6)THE RESIDUAL ROSIN OR TIN OIL OF SOLDERING (COMPONENT OR CHIP COMPONENT) IS NOT BURNED INTO BROWN OR BLACK COLOR.</li> <li>(7)SEALANT ON TOP OF THE ITO CIRCUIT HAS NOT HARDENED.</li> <li>(8)PIN TYPE MUST MATCH TYPE IN SPECIFICATION SHEET.</li> <li>(9)LCD PIN LOOSE OR MISSING PINS.</li> <li>(10)PRODUCT PACKAGING MUST THE SAME AS SPECIFIED ON PACKAGING SPECIFICATION SHEET.</li> <li>(11)PRODUCT DIMENSION AND STRUCTURE MUST CONFORM TO PRODUCT SPECIFICATION SHEET.</li> <li>(12)THE APPEARANCE OF HEAT SEAL SHOULD NOT ADMIT ANY DIRT AND BREAK.</li> </ul> |

MODEL NO. VERSION PAGE ETQ570G2DM6 4 19

| NO. | ITEM          | CRITERIA THE LCD WITH EXTENSIVE CRACK IS NOT ACCEPTABLE |                                                                                                                                                                                                                                      |                                                                                                                                               |                                                      |
|-----|---------------|---------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------|
|     | CRACKED GLASS | GENERAL GLASS CHIP:                                     |                                                                                                                                                                                                                                      | b<br>< VIEWING AREA<br>≤ W/2  E BETWEEN<br>AREA AND LO<br>OGE<br>E LENGTH                                                                     | c<br>≤ 1/8X<br>≤ 1/8X                                |
| 15. |               | CHIP ON ELECTRODE PAD                                   | $\begin{array}{c c} & a \\ & \leq t/2 \\ & > t/2 & , \leq 2t \\ \hline *W=DISTANCI \\ SEALANT \\ PANEL EL \\ X = LCD SIDI \\ t = GLASS TI \\ \hline \\ & a \\ & \leq t \\ \hline * X=LCD SIDE \\ t = GLASS TI \\ \hline \end{array}$ | AREA AND LODGE E LENGTH HICKNESS  b ≤ 0.5mm                                                                                                   | c<br>≤ 1/8X<br>≤ 1/8X<br>CD                          |
|     |               | c a                                                     | *X=LCD SIDE t = GLASS TH L=ELECTROI DIF GLASS CH TERMINAL, REMAIN AN ACCORDING TERMINAL 2 IF THE PROI SEALED BY                                                                                                                      | b ≤1/8X WIDTH HICKNESS DE PAD LENGT HIPPING THE IT OVER 2/3 OF T ND BE, INSPECT G TO ELECTRO SPECIFICATIO DUCT WILL BE THE CUSTOM MENT MARK M | FO<br>FHE ITO MU<br>FED<br>DDE<br>DNS<br>HEAT<br>ER, |

| MODEL NO.   | VERSION | PAGE |
|-------------|---------|------|
| ETQ570G2DM6 | 4       | 20   |

#### 12.4 RELIABILITY TEST

#### 12.4.1 STANDARD SPECIFICATIONS FOR RELIABILITY OF LCD MODULE

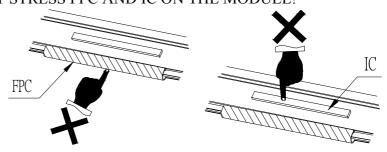
| NO | ITEM                                    | DESCRIPTION                                                                                                             |
|----|-----------------------------------------|-------------------------------------------------------------------------------------------------------------------------|
| 1  | HIGH<br>TEMPERATURE<br>OPERATION        | THE SAMPLE SHOULD BE ALLOWED TO STAND AT +70°C FOR 240 HRS                                                              |
| 2  | LOW<br>TEMPERATURE<br>OPERATION         | THE SAMPLE SHOULD BE ALLOWED TO STAND AT -20°C FOR 240 HRS                                                              |
| 3  | HIGH<br>TEMPERATURE<br>STORAGE          | THE SAMPLE SHOULD BE ALLOWED TO STAND AT +80°C FOR 240 HRS                                                              |
| 4  | LOW<br>TEMPERATURE<br>STORAGE           | THE SAMPLE SHOULD BE ALLOWED TO STAND AT -30°C FOR 240 HRS                                                              |
| 5  | HIGH TEMP /<br>HUMIDITY TEST<br>STORAGE | THE SAMPLE SHOULD BE ALLOWED TO STAND AT 60°C , 90% RH<br>240 HRS                                                       |
| 6  | THERMAL SHOCK (NOT OPERATED)            | THE SAMPLE SHOULD BE ALLOWED TO STAND THE FOLLOWING 10 CYCLES OF OPERATION: -40°C FOR 30 MINUTES ~ +85°C FOR 30 MINUTES |
| 7  | (EEEETROSTITIE                          | AIR DISCHARGE ± 12KV<br>CONTACT DISCHARGE ± 8KV                                                                         |

NOTE (1): THE TEST SAMPLES HAVE RECOVERY TIME FOR 2 HOURS AT ROOM TEMPERATURE BEFORE THE FUNCTION CHECK. IN THE STANDARD CONDITIONS, THERE IS NO DISPLAY FUNCTION NG ISSUE OCCURRED.

| MODEL NO.   | VERSION | PAGE |
|-------------|---------|------|
| ETQ570G2DM6 | 4       | 21   |

#### 12.5 TESTING CONDITIONS AND INSPECTION CRITERIA

FOR THE FINAL TEST THE TESTING SAMPLE MUST BE STORED AT ROOM TEMPERATURE FOR 24 HOURS, AFTER THE TESTS LISTED IN TABLE 12.5, STANDARD SPECIFICATIONS FOR RELIABILITY HAVE BEEN EXECUTED IN ORDER TO ENSURE STABILITY.


| NO | ITEM                   | TEST MODEL             | INSPECTION CRITERIA                                                                                                |
|----|------------------------|------------------------|--------------------------------------------------------------------------------------------------------------------|
| 1  | CURRENT<br>CONSUMPTION |                        | THE CURRENT CONSUMPTION SHOULD CONFORM TO THE PRODUCT SPECIFICATION.                                               |
| 2  | CONTRAST               | REFER TO SPECIFICATION | AFTER THE TESTS HAVE BEEN EXECUTED, THE CONTRAST MUST BE LARGER THAN HALF OF ITS INITIAL VALUE PRIOR TO THE TESTS. |
| 3  | APPEARANCE             | VISUAL INSPECTION      | DEFECT FREE                                                                                                        |

#### 12.6 OPERATION

- 12.6.1 DO NOT CONNECT OR DISCONNECT MODULES TO OR FROM THE MAIN SYSTEM WHILE POWER IS BEING SUPPLIED .
- 12.6.2 USE THE MODULE WITHIN SPECIFIED TEMPERATURE; LOWER TEMPERATURE CAUSES THE RETARDATION OF BLINKING SPEED OF THE DISPLAY; HIGHER TEMPERATURE MAKES OVERALL DISPLAY DISCOLOR. WHEN THE TEMPERATURE RETURNS TO NORMALITY, THE DISPLAY WILL OPERATE NORMALLY.
- 12.6.3 ADJUST THE LC DRIVING VOLTAGE TO OBTAIN THE OPTIMUM CONTRAST .
- 12.6.4 POWER ON SEQUENCE INPUT SIGNALS SHOULD NOT BE SUPPLIED TO LCD MODULE BEFORE POWER SUPPLY VOLTAGE IS APPLIED AND REACHES THE SPECIFIED VALUE.

  IF ABOVE SEQUENCE IS NOT FOLLOWED, CMOS LSIS OF LCD MODULES MAY BE DAMAGED DUE TO LATCH UP PROBLEM.
- 12.6.5 NOT ALLOWED TO INFLICT ANY EXTERNAL STRESS AND TO CAUSE ANY MECHANICAL INTERFERENCE ON THE BENDING AREA OF FPC DURING THE TAIL BENDING BACKWARDS!

  DO NOT STRESS FPC AND IC ON THE MODULE!



| MODEL NO.   | VERSION | PAGE |
|-------------|---------|------|
| ETQ570G2DM6 | 4       | 22   |

#### 12.7 NOTICE

- 12.7.1 USE A GROUNDED SOLDERING IRON WHEN SOLDERING CONNECTOR I/O TERMINALS . FOR SOLDERING OR REPAIRING, TAKE PRECAUTION AGAINST THE TEMPERATURE OF THE SOLDERING IRON AND THE SOLDERING TIME TO PREVENT PEELING OFF THE THROUGH-HOLE-PAD .
- 12.7.2 DO NOT DISASSEMBLE . EDT SHALL NOT BE HELD RESPONSIBLE IF THE MODULE IS DISASSEMBLED AND UPON THE REASSEMBLY THE MODULE FAILED .
- 12.7.3 DO NOT CHARGE STATIC ELECTRICITY, AS THE CIRCUIT OF THIS MODULE CONTAINS CMOS LSIS. A WORKMAN'S BODY SHOULD ALWAYS BE STATIC-PROTECTED BY USE OF AN ESD STRAP. WORKING CLOTHES FOR SUCH PERSONNEL SHOULD BE OF STATIC-PROTECTED MATERIAL.
- 12.7.4 ALWAYS GROUND THE ELECTRICALLY-POWERED DRIVER BEFORE USING IT TO INSTALL THE LCD MODULE. WHILE CLEANING THE WORK STATION BY VACUUM CLEANER, DO NOT BRING THE SUCKING MOUTH NEAR THE MODULE; STATIC ELECTRICITY OF THE ELECTRICALLY-POWERED DRIVER OR THE VACUUM CLEANER MAY DESTROY THE MODULE.
- 12.7.5 DON'T GIVE EXTERNAL SHOCK.
- 12.7.6 DON'T APPLY EXCESSIVE FORCE ON THE SURFACE.
- 12.7.7 LIQUID IN LCD IS HAZARDOUS SUBSTANCE. MUST NOT LICK AND SWALLOW.
  WHEN THE LIQUID IS ATTACH TO YOUR, SKIN, CLOTH ETC. WASH IT OUT THOROUGHLY AND IMMEDIATELY.
- 12.7.8 DON'T OPERATE IT ABOVE THE ABSOLUTE MAXIMUM RATING.
- 12.7.9 STORAGE IN A CLEAN ENVIRONMENT, FREE FROM DUST, ACTIVE GAS, AND SOLVENT.
- 12.7.10 STORE WITHOUT ANY PHYSICAL LOAD.
- 12.7.11 REWIRING: NO MORE THAN 3 TIMES.